Reg. No. : \square

Question Paper Code : 73772

B.E./B.Tech. DEGREE EXAMINATION, APRIL/ MAY 2017.

Fourth Semester
Civil Engineering
MA 2264/MA 41/MA 1251/080280026/10177 MA 401/MA 51/
10144 ECE 15 - NUMERICAL METHODS
(Common to Sixth Semester - Electronics and Communication Engineering, Computer Science and Engineering, Industrial Engineering, Information Technology
and Fifth Semester - Polymer Technology, Chemical Engineering, Polymer Technology and Fourth Semester - Aeronautical Engineering, Civil Engineering, Electrical and Electronics Engineering, Mechatronics Engineering)
(Regulations 2008/2010)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.

$$
\text { PART A }-(10 \times 2=20 \text { marks })
$$

1. Solve the system of equations $2 x+y=3,7 x-3 y=4$ by Gauss-Jordan method.
2. Write down the condition for convergence of fixed point iteration method for $f(x)=0$.
3. State Newton's forward interpolation formula.
4. Show that $\left[x_{0}, x_{1}\right]=\left[x_{1}, x_{0}\right]$ in the divided differences.
5. State Simpson's $\frac{1}{3}$ rule.
6. Use two-point Gaussian quadrature formula to solve $\int_{-1}^{1} \frac{d x}{1+x^{2}}$.
7. Use Euler's method to find $y(0.2)$ and $y(0.4)$ given $y^{\prime}=x y, y(0)=1$.
8. State Milne's Predictor-Corrector formula.
9. Write any two methods to solve on dimensional heat equation.
10. Write down the standard five-point formula to find the numerical solution of Laplace equation.

$$
\text { PART B }-(5 \times 16=80 \mathrm{marks})
$$

11. (a) (i) Apply Gauss-Seidel method to solve the system of equations $4 x+2 y+z=14 ; x+5 y-z=10 ; x+y+8 z=20$.
(ii) Using Newton-Raphson method, find the root of $x^{3}=6 x-4$ lying between 0 and 1 correct to 5 decimal places.

Or
(b) (i) Find the numerically largest eigen value of $\left(\begin{array}{ccc}5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5\end{array}\right)$ and the corresponding eigen vector.
(ii) Using Gauss-Jordan method find the inverse of the matrix $\left(\begin{array}{ccc}1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4\end{array}\right)$
12. (a) Obtain the cubic spline approximation for the function $y=f(x)$ from the following data, given that $y_{0}^{\prime \prime}=y_{3}^{\prime \prime}=0$. Hence find $y(-0.5), y^{\prime}(0.5)$ and $y^{\prime \prime}$ "(1.5).

$$
\begin{array}{ccccc}
x: & -1 & 0 & 1 & 2 \tag{16}\\
y: & -1 & 1 & 3 & 35
\end{array}
$$

Or
(b) (i) By using Newton's divided difference formula find $f(8)$, given

$$
\begin{array}{cccccc}
x: & 4 & 5 & 7 & 10 & 11 \tag{8}\\
f(x): & 48 & 100 & 294 & 900 & 1210
\end{array}
$$

(iii) Using Lagrange's formula find the cubic polynomial which takes the following values.

$$
\begin{array}{ccccc}
x: & 1 & 3 & 4 & 6 \tag{8}\\
f(x) & 0 & 22 & 57 & 205
\end{array}
$$

13. (a) (i) Evaluate $\int_{2}^{3} \frac{d x}{1+x}$ using 3-point Gaussian formula.
(ii) By dividing the range into six equal parts, evaluate $\int_{0}^{6} \frac{d x}{1+x}$ using Simpson's $\frac{3}{8}$ rule

Or
(b) (i) Evaluate $\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \sin (x+y) d x d y$ by Simpson's rule taking $h=k=\frac{\pi}{4}$. Compare with the actual value.
(ii) Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ correct to three decimal places using Romberg's method.
14. (a) Given $y^{\prime \prime}+x y^{\prime}+y=0, y(0)=1, y^{\prime}(0)=0$, find the value of $y(0.1)$ and $y(0.2)$ by using Range-Kutta method.

Or
(b) Determine the value of $y(0.4)$ using Milne's predictor corrector method, given that $y^{\prime}=x y+y^{2}, y(0)=1$. Use Taylor series method to get the values of $y(0.1), y(0.2)$ and $y(0.3)$.
15. (a) (i) Solve $x y^{\prime \prime}+y=0, y(1)=1, y(2)=2$ with $h=0.25$ using finite difference method.
(ii) Solve $4 u_{g x,}-u_{t t}$ given that $u(0, t)=0, u(4, y)=0, u_{t}(x, 0)=0$ and $u(x, 0)=x(4-x)$, \&aking $h=1$. (for 4 time steps).

Or
(b) Solve by Crank-Nicolson's method $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}$ for $0<x<1, t>0$ given that $u(0, t)=0, u(1, t)=0$ and $u(x, 0)=100\left(x-x^{2}\right)$. Compute u for one time step with $h=\frac{1}{4}$.

